
1

Návrh standardů pro tvorbu datového modelu

Topic Mandatory /
Recommended

Description of the rule

Identifiers of the
database fields and
tables

Mandatory Write them in capital letters divided by underlines.
Example of the identifier: THIS_IS_THE_NAME_OF_THE_TABLE
There should be used always names that correspond to the field
content and that describe the content as good as possible.
(e.g. PERSON.REGISTRATION_STATE is preferred before the general
name PERSON.STATE)

Naming consistency Mandatory Keep the naming in the database consistent.
Use same names for the same things, use same data types for the
same things.
Incl. naming of primary keys, foreign keys, constraints, indexes for
foreign keys, …

Character set Recommended Keep the database ready for the special characters. Use the default
database character set Unicode.

Primary key Mandatory Define a primary key in each table.

Primary key naming Recommended Use always one field for the primary key called ID_XYZ where XYZ is
the table name.
The exception are the intermediate tables realizing a M:N relation
where the primary key consists from two fields. In this case it is
possible to create an additional ID_XYZ field as primary key, but
some frameworks (like Hibernate) prefer to have a primary key from
two fields in such a case.

Foreign key Mandatory Define foreign keys for relations between the tables.
We create an index for each foreign key.
Example:
table PERSON has two fields ID_PERSON and NAME
table BUILDING has fields ID_BUILDING and ID_PERSON (as owner),
… If it is necessary to have more relations from BUILDING to PERSON
we add “_AS_” in English “_ALS_” in German and “MEANING”.
E.g. HOUSE.ID_PERSON_AS_OWNER
We can use it also in case of one field to make the meaning of the
field more clear.

Create user /change
user / timestamp

Mandatory Create in each table 5 technical fields for logging who and when
created the record, who and when updated the record for the last
time and a timestamp to prevent concurrency conflicts (e.g. two
users changing same record at the same time).
 "CREATE_DATE" Timestamp(3),
 "CREATE_USER" Number(38,0),
 "CHANGE_DATE" Timestamp(3),
 "CHANGE_USER" Number(38,0),
 "CHANGE_TIMESTAMP" Number(38,0) NOT NULL
Set these values – by the triggers or by the application. (E.g. a trigger
may automatically set CHANGE_TIMESTAMP according to a Oracle-
sequence at the record creation and at each record modification).
Example of usage of CHANGE_TIMESTAMP Application loads data
about a person (incl. PERSON.CHANGE_TIMSTAMP). User can see
the person on the screen. Let’s imagine another user is changing the
given person at this moment. Later the first person modifies the
“old” data on the screen and tries to save them in DB. The
application has to test at the saving whether there is in DB still the
originally read value in the field CHANGE_TIMESTAMP. If not it
means somebody else has changed the data in the meantime. And
the saving should failure (rollback, no change in DB).

2

Archive table Mandatory Create an archive table (ARC_XYZ) for each original table (XYZ).
Log each data change in the ARC table via (generated) triggers.
It (in the combination with the 5 technical fields – see above) gives
the user a chance to answer any time a question who and when set
a certain value in some field or who and when deleted a certain
record.

Archive table –
additional fields

Recommended CREATE TABLE "ARC_XYZ"(
"CHANGE_NR" NUMBER(38,0), -- filled from a global sequence for all
ARC_ tables
"ID_XYZ" Number(38,0),
…
"CREATE_DATE" Timestamp(3),
"CREATE_USER" Number(38,0),
"CHANGE_DATE" Timestamp(3),
"CHANGE_USER" Number(38,0),
"CHANGE_TIMESTAMP" Number(38,0),
"ARC_CREATE_DATE" TIMESTAMP(3),
"ARC_CREATE_USER" NUMBER(38,0),
"WHY_IN_ARC" CHAR(1 CHAR)) -- ‘U’ = updated or ‘D’ = deleted

Boolean representation Mandatory Use a DBMS specific boolean type or numeric values 0/1 or text
values T/F.

Views Mandatory Name the views V_*

Views for external
systems

Mandatory If some external systems need to work with your database, do not
allow them to work directly with the tables, but always create views
for them. It gives you a chance to restructure your database later
and just change the views for the external systems. Otherwise the
future restructuring of your database would lead to a necessity to
change (and pay) changes of the external systems.

Stored procedures Mandatory Name the stored procedures up_*
(up = user procedure, because of MSSQL performance problems
with the names sp_* we use generally in all DBMSs up_)

Stored functions Mandatory Name the stored functions uf_*
(uf = user function)

CODES, STATES, … Recommended Let’s imagine
- we have a field REGISTRATION_STATE with three possible

values: Candidate, Member, Deactivated
- we know it won’t be necessary to define the registration

states dynamically
- we know the set of the three possible values is stable, we do

not see any necessity to define additional possible values
In such a case we usually do not create a special table for the
registration states, but create just a field in the corresponding table
(e.g. PERSON.REGISTRATION_STATE). We ensure via CONSTRAINT on
DB level that there are allowed only values:
‘C’, -- for Candidate
‘M’, -- for Member
‘D’ -- for Deactivated
Such codes are usually of the type char(1) and the chosen values
(e.g. ‘C’) correspond to the meaning they represent (e.g. Candidate).

PROGRAM_CODE Mandatory Let’s imagine there are ten records in some base table (e.g. a table
with some states) and there is connected a special application
functionality with few certain records.
Do not hardcode in the application the IDs of these records, but
create a special field PROGRAM_CODE and write there a special text
value (unique in the given table). Then it is clear to everybody the
application contains a special functionality for the given record.

3

Indexes and statistics Recommended Ensure a regular automatic actualization of the indexes and statistics
(e.g. via “MSSQL jobs”).

Automatic backup Recommended Ensure a regular automatic database backuping (e.g. via “MSSQL
jobs”).

Indexes / performance Recommended Create indexes for the expected DML-statements.
It is necessary to check the performance of the real application and
prepare indexes according to the real statements.
Use e.g. profiler and index tuning wizard for that.

Document the DB
structures

Mandatory Write a detail comment to each table, view, column, stored
procedure, trigger. A missing or not clear comment is a common
reason of the misunderstandings.
When the DBMS supports it we create the comments also in DB.
Exception: It is not necessary to write comment to each archive table
and its fields, because it has “same/similar” structure as the original
one.
Exception: It is not necessary to document the 5 technical fields,
because they have a same meaning in the each table.

Sequences, identity
fields, …

Mandatory Select a DBMS specific solution how to assign the next IDs to the
records. Use identity fields for MSSQL, sequences for Oracle, …
But never use the algorithm (MAX(ID_TBL) from TBL) + 1.
It is not safe when more people are working at the same time and it
ignores the fact that some records may be deleted (they are logged
in the archive table ARC_TBL).

